Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Environ Sci Pollut Res Int ; 30(33): 80655-80675, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-20243708

ABSTRACT

Taxis pose a higher threat to global climate change and human health through air emissions. However, the evidence on this topic is scarce, especially, in developing countries. Therefore, this study conducted estimation of fuel consumption (FC) and emission inventories on Tabriz taxi fleet (TTF), Iran. A structured questionnaire to obtain operational data of TTF, municipality organizations, and literature review were used as data sources. Then modeling was used to estimate fuel consumption ratio (FCR), emission factors (EFs), annual FC, and emissions of TTF using uncertainty analysis. Also, the impact of COVID-19 pandemic period was considered on the studied parameters. The results showed that TTF have high FCRs of 18.68 L/100 km (95% CI=17.67-19.69 L/100 km), which are not affected by age or mileage of taxis, significantly. The estimated EFs for TTF are higher than Euro standards, but the differences are not significant. However, it is critical as can be an indication of inefficiency of periodic regulatory technical inspection tests for TTF. COVID-19 pandemic caused significant decrease in annual total FC and emissions (9.03-15.6%), but significant increase in EFs of per-passenger-kilometer traveled (47.9-57.3%). Annual vehicle-kilometer-traveled by TTF and the estimated EFs for gasoline-compressed natural gas bi-fueled TTF are the main influential parameters in the variability of annual FC and emission levels. More studies on sustainable FC and emissions mitigation strategies are needed for TTF.


Subject(s)
Air Pollutants , COVID-19 , Humans , Air Pollutants/analysis , Vehicle Emissions/analysis , Iran , Pandemics , Uncertainty , Gasoline/analysis , Motor Vehicles , Environmental Monitoring/methods
2.
J Environ Manage ; 343: 118252, 2023 Oct 01.
Article in English | MEDLINE | ID: covidwho-2328110

ABSTRACT

The study aimed to investigate the PM2.5 variations in different periods of COVID-19 control measures in Northern Taiwan from Quarter 1 (Q1) 2020 to Quarter 2 (Q2) 2021. PM2.5 sources were classified based on long-range transport (LRT) or local pollution (LP) in three study periods: one China lockdown (P1), and two restrictions in Taiwan (P2 and P3). During P1 the average PM2.5 concentrations from LRT (LRT-PM2.5-P1) were higher at Fuguei background station by 27.9% and in the range of 4.9-24.3% at other inland stations compared to before P1. The PM2.5 from LRT/LP mix or pure LP (Mix/LP-PM2.5-P1) was also higher by 14.2-39.9%. This increase was due to higher secondary particle formation represented by the increase in secondary ions (SI) and organic matter in PM2.5-P1 with the largest proportion of 42.17% in PM2.5 from positive matrix factorization (PMF) analysis. A similar increasing trend of Mix/LP-PM2.5 was found in P2 when China was still locked down and Taiwan was under an early control period but the rapidly increasing infected cases were confirmed. The shift of transportation patterns from public to private to avoid virus infection explicated the high correlation of the increasing infected cases with the increasing PM2.5. In contrast, the decreasing trend of LP-PM2.5-P3 was observed in P3 with the PM2.5 biases of ∼45% at all the stations when China was not locked down but Taiwan implemented a semi-lockdown. The contribution of gasoline vehicle sources in PM2.5 was reduced from 20.3% before P3 to 10% in P3 by chemical signatures and source identification using PMF implying the strong impact of strict control measures on vehicle emissions. In summary, PM2.5 concentrations in Northern Taiwan were either increased (P1 and P2) or decreased (P3) during the COVID-19 pandemic depending on control measures, source patterns and meteorological conditions.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Air Pollutants/analysis , Taiwan/epidemiology , Particulate Matter/analysis , COVID-19/epidemiology , Pandemics , Communicable Disease Control , Air Pollution/analysis , Vehicle Emissions/analysis , Environmental Monitoring
3.
Chemosphere ; 335: 139056, 2023 Sep.
Article in English | MEDLINE | ID: covidwho-2328007

ABSTRACT

Carbonaceous aerosols have great adverse impacts on air quality, human health, and climate. However, there is a limited understanding of carbonaceous aerosols in semi-arid areas. The correlation between carbonaceous aerosols and control measures is still unclear owing to the insufficient information regarding meteorological contribution. To reveal the complex relationship between control measures and carbonaceous aerosols, offline and online observations of carbonaceous aerosols were conducted from October 8, 2019 to October 7, 2020 in Hohhot, a semi-arid city. The characteristics and sources of carbonaceous aerosols and impacts of anthropogenic emissions and meteorological conditions were studied. The annual mean concentrations (± standard deviation) of fine particulate matter (PM2.5), organic carbon (OC), and elemental carbon (EC) were 42.81 (±40.13), 7.57 (±6.43), and 2.25 (±1.39) µg m-3, respectively. The highest PM2.5 and carbonaceous aerosol concentrations were observed in winter, whereas the lowest was observed in summer. The result indicated that coal combustion for heating had a critical role in air quality degradation in Hohhot. A boost regression tree model was applied to quantify the impacts of anthropogenic emissions and meteorological conditions on carbonaceous aerosols. The results suggested that the anthropogenic contributions of PM2.5, OC, and EC during the COVID-19 lockdown period were 53.0, 15.0, and 2.36 µg m-3, respectively, while the meteorological contributions were 5.38, 2.49, and -0.62 µg m-3, respectively. Secondary formation caused by unfavorable meteorological conditions offset the emission reduction during the COVID-19 lockdown period. Coal combustion (46.4% for OC and 35.4% for EC) and vehicular emissions (32.0% for OC and 50.4% for EC) were the predominant contributors of carbonaceous aerosols. The result indicated that Hohhot must regulate coal use and vehicle emissions to reduce carbonaceous aerosol pollution. This study provides new insights and a comprehensive understanding of the complex relationships between control strategies, meteorological conditions, and air quality.


Subject(s)
Air Pollutants , COVID-19 , Humans , Air Pollutants/analysis , Environmental Monitoring , Communicable Disease Control , Respiratory Aerosols and Droplets , Particulate Matter/analysis , Vehicle Emissions/analysis , Coal/analysis , Seasons , Carbon/analysis , China
4.
J Air Waste Manag Assoc ; 73(5): 374-393, 2023 05.
Article in English | MEDLINE | ID: covidwho-2317875

ABSTRACT

Following the outbreak of the COVID-19 pandemic, several papers have examined the effect of the pandemic response on urban air pollution worldwide. This study uses observed traffic volume and near-road air pollution data for black carbon (BC), oxides of nitrogen (NOx), and carbon monoxide (CO) to estimate the emissions contributions of light-duty and heavy-duty diesel vehicles in five cities in the continental United States. Analysis of mobile source impacts in the near-road environment has several health and environmental justice implications. Data from the initial COVID-19 response period, defined as March to May in 2020, were used with data from the same period over the previous two years to develop general additive models (GAMs) to quantify the emissions impact of each vehicle class. The model estimated that light-duty traffic contributes 4-69%, 14-65%, and 21-97% of BC, NOx, and CO near-road levels, respectively. Heavy-duty diesel traffic contributes an estimated 26-46%, 17-63%, and -7-18% of near-road levels of the three pollutants. The estimated mobile source impacts were used to calculate NOx to CO and BC to NOx emission ratios, which were between 0.21-0.32 µg m-3 NOx (µg m-3 CO)-1 and 0.013-0.018 µg m-3 BC (µg m-3 NOx)-1. These ratios can be used to assess existing emission inventories for use in determining air pollution standards. These results agree moderately well with recent National Emissions Inventory estimates and other empirically-derived estimates, showing similar trends among the pollutants. However, a limitation of this study was the recurring presence of an implausible air pollution impact estimate in 41% of the site-pollutant combinations, where a vehicle class was estimated to account for either a negative impact or an impact higher than the total estimated pollutant concentration. The variations seen in the GAM estimates are likely a result of location-specific factors, including fleet composition, external pollution sources, and traffic volumes.Implications: Drastic reductions in traffic and air pollution during the lockdowns of the COVID-19 pandemic present a unique opportunity to assess vehicle emissions. A General Additive Modeling approach is developed to relate traffic levels, observed air pollution, and meteorology to identify the amount vehicle types contribute to near-road levels of traffic-related air pollutants (TRAPs), which is important for future emission regulation and policy, given the significant health and environmental justice implications of vehicle-related pollution along major roadways. The model is used to evaluate emission inventories in the near-road environment, which can be used to refine existing estimates. By developing a locally data-driven method to readily characterize impacts and distinguish between heavy and light duty vehicle effects, local regulations can be used to target policies in major cities around the country, thus addressing local health disbenefits and disparities occurring as a result of exposure to near-road air pollution.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Environmental Pollutants , Humans , Air Pollutants/analysis , Particulate Matter/analysis , Pandemics , Environmental Monitoring/methods , COVID-19/epidemiology , Communicable Disease Control , Air Pollution/analysis , Vehicle Emissions/analysis , Environmental Pollutants/analysis , Soot/analysis
5.
Sci Total Environ ; 886: 163855, 2023 Aug 15.
Article in English | MEDLINE | ID: covidwho-2309884

ABSTRACT

Maritime activity has diverse environmental consequences impacts in port areas, especially for air quality, and the post-COVID-19 cruise tourism market's potential to recover and grow is causing new environmental concerns in expanding port cities. This research proposes an empirical and modelling approach for the evaluation of cruise ships' influence on air quality concerning NO2 and SO2 in the city of La Paz (Mexico) using indirect measurements. EPA emission factors and the AERMOD modelling system coupled to WRF were used to model dispersions, while street-level mobile monitoring data of air quality from two days of 2018 were used and processed using a radial base function interpolator. The local differential Moran's Index was estimated at the intersection level using both datasets and a co-location clustering analysis was performed to address spatial constancy and to identify the pollution levels. The modelled results showed that cruise ships' impact on air quality had maximum values of 13.66 µg/m3 for NO2 and 15.71 µg/m3 for SO2, while background concentrations of 8.80 for NOx and 0.05 for SOx (µg/m3) were found by analysing the LISA index values for intersections not influenced by port pollution. This paper brings insights to the use of hybrid methodologies as an approach to studying the influence of multiple-source pollutants on air quality in contexts totally devoid of environmental data.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Air Pollutants/analysis , Nitrogen Dioxide/analysis , Vehicle Emissions/analysis , Ships , Mexico , Environmental Monitoring/methods , Air Pollution/analysis , Particulate Matter/analysis
6.
Environ Res ; 231(Pt 1): 116068, 2023 Aug 15.
Article in English | MEDLINE | ID: covidwho-2309520

ABSTRACT

Urban air fine particles are a major health-relating problem. However, it is not well understood how the health-relevant features of fine particles should be monitored. Limitations of PM2.5 (mass concentration of sub 2.5 µm particles), which is commonly used in the health effect estimations, have been recognized and, e.g., World Health Organization (WHO) has released good practice statements for particle number (PN) and black carbon (BC) concentrations (2021). In this study, a characterization of urban wintertime aerosol was done in three environments: a detached housing area with residential wood combustion, traffic-influenced streets in a city centre and near an airport. The particle characteristics varied significantly between the locations, resulting different average particle sizes causing lung deposited surface area (LDSA). Near the airport, departing planes had a major contribution on PN, and most particles were smaller than 10 nm, similarly as in the city centre. The high hourly mean PN (>20 000 1/cm3) stated in the WHO's good practices was clearly exceeded near the airport and in the city centre, even though traffic rates were reduced due to a SARS-CoV-2-related partial lockdown. In the residential area, wood combustion increased both BC and PM2.5, but also PN of sub 10 and 23 nm particles. The high concentrations of sub 10 nm particles in all the locations show the importance of the chosen lower size limit of PN measurement, e.g., WHO states that the lower limit should be 10 nm or smaller. Furthermore, due to ultrafine particle emissions, LDSA per unit PM2.5 was 1.4 and 2.4 times higher near the airport than in the city centre and the residential area, respectively, indicating that health effects of PM2.5 depend on urban environment as well as conditions, and emphasizing the importance of PN monitoring in terms of health effects related to local pollution sources.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Particulate Matter/analysis , Air Pollutants/analysis , Environmental Monitoring/methods , SARS-CoV-2 , Communicable Disease Control , Respiratory Aerosols and Droplets , Air Pollution/analysis , Particle Size , Lung/chemistry , Soot , Vehicle Emissions/analysis
7.
Sci Total Environ ; 879: 162892, 2023 Jun 25.
Article in English | MEDLINE | ID: covidwho-2288111

ABSTRACT

The Western Pacific Ocean (the WPO), as one of the busiest shipping areas in the world, holds a complex water traffic network. In 2020, the International Maritime Organization (IMO) low-sulfur fuel regulations were implemented globally, while the COVID-19 outbreak influenced shipping activities together. This study aimed to assess the combined impact of epidemics and low-sulfur fuel policies on ship emissions, as well as their environmental effects on the WPO. The ship emission model based on the Automatic Identification System (AIS) data was applied to analyze the monthly emission variations during 2018-2020. It was found that the epidemic had obvious diverse influences on the coastal ports in the WPO. Overall, shipping emissions declined by 15 %-30 % in the first half of 2020 compared with those in 2019 due to the COVID-19 lockdown, whereas they rebounded in the second half as a result of trade recovery. The pollutants discharged per unit of cargo by ships rose after the large-range lockdown. China's multiphase domestic emission control areas (DECAs) and the IMO global low-sulfur fuel regulation have greatly reduced SO2 emissions from ships and caused them to "bypass and come back" to save fuel costs around emission control areas from 2018 to 2020. Based on satellite data and land-based measurements, it was found that the air quality over sea water and coastal cities has shown a positive response to changes in ship-emitted NOx and SO2. Our results reveal that changes in shipping emissions during typical periods, depending on their niches in the complex port traffic network, call for further efforts for cleaner fuel oils, optimized ECA and ship lane coordination in the future. Shipping related air pollutions during the later economic recovery also needs to be addressed after international scale standing-by events.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Epidemics , Fuel Oils , Humans , Air Pollutants/analysis , Ships , COVID-19/epidemiology , Communicable Disease Control , Air Pollution/analysis , Sulfur , Vehicle Emissions/analysis , Particulate Matter/analysis
8.
Huan Jing Ke Xue ; 44(2): 593-601, 2023 Feb 08.
Article in Chinese | MEDLINE | ID: covidwho-2263407

ABSTRACT

To understand the changes in chemical composition and sources of PM2.5 under the extreme reduction background during the COVID-19 epidemic periods in Nanjing, hourly observation results of PM2.5 components (water-soluble inorganic ions, carbonaceous components, and inorganic elements) of two epidemic events from January to March 2020 and June to August 2021 were analyzed. In comparison to that during pre-epidemic periods, the concentration of NO3- during the two epidemic control periods decreased by 52.9% and 43.0%, respectively, which was larger than the decreases in NH4+(46.4% and 31.6%) and SO42-(33.8% and 16.5%). Since the observation site was located close to a main road, the decrease in elemental carbon (EC, 35.4% and 20.6%) was higher than that in organic carbon (OC, 11.1% and 16.2%). In reference to the variations in the characteristic ratios of the bulk components mentioned above, the epidemic control showed a more substantial influence on traffic emissions than industrial activities. The concentration time series of PM2.5 major components over the epidemic periods indicated that NOx from local traffic emissions had substantial contributions to the formation of NO3-, which led to local short-term PM2.5 pollution. In addition, the positive matrix factorization (PMF) model was used to analyze the hourly observation data of PM2.5 components. The seven identified factors were linked with metallurgy, firework and firecracker combustions, road traffic emissions, coal combustion, dust resuspension, secondary sulfate, and secondary nitrate. Because the nitrate was unstable under high temperature, the contribution of secondary nitrate to PM2.5 during the epidemic control period of 2021 (summer, 21.2%) was much lower than that during the epidemic control period of 2020 (winter, 60.6%); however, the formation of secondary components always dominated the contribution of PM2.5 sources. Therefore, emissions of NOx and SO2 should be further controlled to continuously reduce ambient PM2.5 concentrations in Chinese cities.


Subject(s)
Air Pollutants , COVID-19 , Humans , Air Pollutants/analysis , Particulate Matter/analysis , Vehicle Emissions/analysis , Nitrates , Environmental Monitoring/methods , COVID-19/epidemiology , Seasons , Carbon/analysis , Respiratory Aerosols and Droplets
9.
Environ Int ; 172: 107805, 2023 02.
Article in English | MEDLINE | ID: covidwho-2266300

ABSTRACT

BACKGROUND: Urban areas are hot spots for human exposure to air pollution, which originates in large part from traffic. As the urban population continues to grow, a greater number of people risk exposure to traffic-related air pollution (TRAP) and its adverse, costly health effects. In many cities, there is a need and scope for air quality improvements through targeted policy interventions, which continue to grow including rapidly changing technologies. OBJECTIVE: This systematic evidence map (SEM) examines and characterizes peer-reviewed evidence on urban-level policy interventions aimed at reducing traffic emissions and/or TRAP from on-road mobile sources, thus potentially reducing human exposures and adverse health effects and producing various co-benefits. METHODS: This SEM follows a previously peer-reviewed and published protocol with minor deviations, explicitly outlined here. Articles indexed in Public Affairs Index, TRID, Medline and Embase were searched, limited to English, published between January 1, 2000, and June 1, 2020. Covidence was used to screen articles based on previously developed eligibility criteria. Data for included articles was extracted and manually documented into an Excel database. Data visualizations were created in Tableau. RESULTS: We identified 7528 unique articles from database searches and included 376 unique articles in the final SEM. There were 58 unique policy interventions, and a total of 1,139 unique policy scenarios, comprising these interventions and different combinations thereof. The policy interventions fell under 6 overarching policy categories: 1) pricing, 2) land use, 3) infrastructure, 4) behavioral, 5) technology, and 6) management, standards, and services, with the latter being the most studied. For geographic location, 463 policy scenarios were studied in Europe, followed by 355 in Asia, 206 in North America, 57 in South America, 10 in Africa, and 7 in Australia. Alternative fuel technology was the most frequently studied intervention (271 times), followed by vehicle emission regulation (134 times). The least frequently studied interventions were vehicle ownership taxes, and studded tire regulations, studied once each. A mere 3 % of studies addressed all elements of the full-chain-traffic emissions, TRAP, exposures, and health. The evidence recorded for each unique policy scenario is hosted in an open-access, query-able Excel database, and a complementary interactive visualization tool. We showcase how users can find more about the effectiveness of the 1,139 included policy scenarios in reducing, increasing, having mixed or no effect on traffic emissions and/or TRAP. CONCLUSION: This is the first peer-reviewed SEM to compile international evidence on urban-level policy interventions to reduce traffic emissions and/or TRAP in the context of human exposure and health effects. We also documented reported enablers, barriers, and co-benefits. The open-access Excel database and interactive visualization tool can be valuable resources for practitioners, policymakers, and researchers. Future updates to this work are recommended. PROTOCOL REGISTRATION: Sanchez, K.A., Foster, M., Nieuwenhuijsen, M.J., May, A.D., Ramani, T., Zietsman, J. and Khreis, H., 2020. Urban policy interventions to reduce traffic emissions and traffic-related air pollution: Protocol for a systematic evidence map. Environment international, 142, p.105826.


Subject(s)
Air Pollutants , Air Pollution , Traffic-Related Pollution , Humans , Air Pollutants/analysis , Air Pollution/prevention & control , Air Pollution/analysis , Vehicle Emissions/prevention & control , Vehicle Emissions/analysis , Policy
10.
Sci Total Environ ; 874: 162540, 2023 May 20.
Article in English | MEDLINE | ID: covidwho-2275809

ABSTRACT

Auckland is a city with limited industrial activity, road traffic being the dominant source of air pollution. Thus, the time periods when social contact and movement in Auckland were severely curtailed due to COVID-19 restrictions presented a unique opportunity to observe impacts on pedestrian exposure to air pollution under a range of different traffic flow scenarios, providing insights into the impacts of potential future traffic calming measures. Pedestrian exposure to ultrafine particles (UFPs), was measured using personal monitoring along a customised route through Central Auckland during different COVID-19-affected traffic flow conditions. Results showed that reduced traffic flows led to statistically significant reductions in average exposure to UFP under all traffic reduction scenarios (TRS). However, the size of the reduction was variable in both time and place. Under the most stringent TRS (traffic reduction of 82 %), median ultrafine particle (UFP) concentrations reduced by 73 %. Under the less stringent scenario, the extent of reduction varied in time and space; a traffic reduction of 62 % resulted in a 23 % reduction in median UFP concentrations in 2020 but in 2021 similar traffic reductions led to a decrease in median UFP concentrations of 71 %. Under all scenarios, the magnitude of the impact of traffic reductions on UFP exposure varied along the route, with areas dominated by emissions from construction and ferry/port activities showing little correlation between traffic flow and exposure. Shared traffic spaces, previously pedestrianised, also recorded consistently high concentrations with little variability observed. This study provided a unique opportunity to assess the potential benefits and risks of such zones and to help decision-makers evaluate future traffic management interventions (such as low emissions zones). The results suggest that controlled traffic flow interventions can result in a significant reduction in pedestrian exposure to UFPs, but that the magnitude of reductions is sensitive to local-scale variations in meteorology, urban land use and traffic flow patterns.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Particulate Matter/analysis , Air Pollutants/analysis , Vehicle Emissions/analysis , Environmental Monitoring/methods , Air Pollution/analysis , Particle Size
11.
Environ Pollut ; 323: 121355, 2023 Apr 15.
Article in English | MEDLINE | ID: covidwho-2257675

ABSTRACT

Hourly observations in northern China city of Taiyuan were performed to compare secondary inorganic aerosol (SIA) reaction mechanisms, and emission effects on SIA during the pre-lock and COVID-19 lock days. Emission control implemented and meteorological conditions during lock days both caused beneficial impact on air quality. NO2 showed the highest decrease ratio of -49.5%, while the relative fraction of NO3- in PM2.5 increased the most (2.7%). Source apportionment revealed the top three contributors to PM2.5 were secondary formation (SF), coal combustion (CC), and vehicle exhaust (VE) during both pre-lock and lock days. EC lock/pre were all lower than 1, suggesting the overall reduction of primary emissions during lock days, while the higher ratio of (SIA/EC) lock/pre (1.01-1.36) indicated the enhanced secondary formation in lock days. The ratio of SIA of pollution to clean days during lock periods considerably higher by 23.7% compared with that in pre-lock periods, which was indicated SIA secondary formation was more pronounced and contributed great to pollution days in lock periods though secondary formation existed in pre-lock and lock periods. Enhanced secondary formation of NO3- and SO42- during lock days might be mainly due to the increased in aqueous and gas-phase reactions, respectively. Except for SF, high contribution of VE and CC were also important for high SIA concentration in pre-lock and lock days, respectively. The decreased contribution of VE weakens its contribution to SIA formation, indicating the effectiveness of VE emission control, as confirmed during the COVID-19 pandemic. This study highlights the aqueous and gas-phase reactions for nitrate and sulfate, respectively, which contributed to heavy pollution, as well as indicated the important role of VE on SIA formation, suggesting the urgent need to further strengthen controls on vehicle emissions.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Air Pollutants/analysis , Particulate Matter/analysis , Pandemics , Prospective Studies , Seasons , Environmental Monitoring , Communicable Disease Control , Respiratory Aerosols and Droplets , Air Pollution/analysis , China , Vehicle Emissions/analysis , Water , Coal
12.
Environ Sci Technol ; 56(23): 16621-16632, 2022 Dec 06.
Article in English | MEDLINE | ID: covidwho-2185450

ABSTRACT

Disparities in exposure to traffic-related air pollution have been widely reported. However, little work has been done to simultaneously assess the impact of various vehicle types on populations of different socioeconomic/ethnic backgrounds. In this study, we employed an extreme gradient-boosting approach to spatially distribute light-duty vehicle (LDV) and heavy-duty truck emissions across the city of Toronto from 2006 to 2020. We examined associations between these emissions and different marginalization indices across this time span. Despite a large decrease in traffic emissions, disparities in exposure to traffic-related air pollution persisted over time. Populations with high residential instability, high ethnic concentration, and high material deprivation were found to reside in regions with significantly higher truck and LDV emissions. In fact, the gap in exposure to traffic emissions between the most residentially unstable populations and the least residentially unstable populations worsened over time, with trucks being the larger contributor to these disparities. Our data also indicate that the number of trucks and truck emissions increased substantially between 2019 and 2020 whilst LDVs decreased. Our results suggest that improvements in vehicle emission technologies are not sufficient to tackle disparities in exposure to traffic-related air pollution.


Subject(s)
Air Pollutants , Air Pollution , Air Pollution/analysis , Air Pollutants/analysis , Particulate Matter/analysis , Vehicle Emissions/analysis , Motor Vehicles , Environmental Monitoring/methods
13.
Sci Total Environ ; 838(Pt 4): 156516, 2022 Sep 10.
Article in English | MEDLINE | ID: covidwho-2082807

ABSTRACT

The worldwide restrictions of social contacts that were implemented in spring 2020 to slow down infection rates of the SARS-CoV-2 virus resulted in significant modifications in mobility behaviour of urban residents. We used three-year eddy covariance measurements of size-resolved particle number fluxes from an urban site in Berlin to estimate the effects of reduced traffic intensity on particle fluxes. Similar observations of urban surface-atmosphere exchange of size-resolved particles that focus on COVID-19 lockdown-related effects are not available, yet. Although the site remained a net emission source for ultrafine particles (UFP, Dp < 100 nm), the median upward flux of ultrafine particles (FUFP) decreased from 8.78 × 107 m-2 s-1 in the reference period to 5.44 × 107 m-2 s-1 during the lockdown. This was equivalent to a relative reduction of -38 % for median FUFP, which was similar to -35 % decrease of road traffic intensity in the flux source area during that period. The size-resolved analysis demonstrated that, on average, net deposition of UFP occurred only during night when particle emission source strength by traffic was at its minimum, whereas accumulation mode particles (100 nm < Dp < 200 nm) showed net deposition also during daytime. The results indicate the benefits of traffic reductions as a mitigation strategy to reduce UFP emissions to the urban atmosphere.


Subject(s)
Air Pollutants , COVID-19 , Air Pollutants/analysis , Atmosphere , Communicable Disease Control , Environmental Monitoring/methods , Humans , Particle Size , Particulate Matter/analysis , SARS-CoV-2 , Vehicle Emissions/analysis
14.
Sci Rep ; 12(1): 16481, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-2050552

ABSTRACT

Observations of air pollution in Krakow have shown that air quality has been improved during the last decade. In the presented study two factors affecting the physicochemical characteristic of PM2.5 fraction at AGH station in Krakow were observed. One is the ban of using solid fuels for heating purposes and the second is COVID-19 pandemic in Krakow. The PM2.5 fraction was collected during the whole year every 3rd day between 2nd March 2020 and 28th February 2021 at AGH station in Krakow. In total 110 PM2.5 fraction samples were collected. The chemical composition was determined for these samples. The elemental analysis was performed by energy dispersive X-ray fluorescence (EDXRF) technique, ions analysis was performed by ion chromatography (IC) and black carbon by optical method. In order to identify the emission sources the positive matrix factorization (PMF) was used. The results of such study were compared to similar analysis performed for PM2.5 for the period from June 2018 to May 2019 at AGH station in Krakow. The PM2.5 concentration dropped by 25% in 2020/2021 in comparison to 2018/2019 at this station. The concentrations of Si, K, Fe, Zn and Pb were lowering by 43-64% in the year 2020/2021 in comparison to 2018/2019. Cu, Mn, Zn and Pb come from mechanical abrasion of brakes and tires while Ti, Fe, Mn and Si are crustal species. They are the indicators of road dust (non-exhaust traffic source). Moreover, the annual average contribution of traffic/industrial/soil/construction work source was reduced in 2020/2021 in comparison to 2018/2019. As well the annual average contribution of fuels combustion was declining by 22% in 2020/2021 in comparison to 2018/2019. This study shows that the ban and lockdown, during COVID-19 pandemic, had significant impact on the characteristic of air pollution in Krakow.


Subject(s)
Air Pollutants , COVID-19 , Air Pollutants/analysis , COVID-19/epidemiology , Carbon/analysis , Communicable Disease Control , Dust/analysis , Environmental Monitoring/methods , Humans , Ions/analysis , Lead/analysis , Pandemics , Particulate Matter/analysis , Poland/epidemiology , Soil , Vehicle Emissions/analysis
15.
Environ Pollut ; 314: 120273, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2041734

ABSTRACT

Hourly PM2.5 speciation data have been widely used as an input of positive matrix factorization (PMF) model to apportion PM2.5 components to specific source-related factors. However, the influence of constant source profile presumption during the observation period is less investigated. In the current work, hourly concentrations of PM2.5 water-soluble inorganic ions, bulk organic and elemental carbon, and elements were obtained at an urban site in Nanjing, China from 2017 to 2020. PMF analysis based on observation data during specific pollution (firework combustion, sandstorm, and winter haze) and emission-reduction (COVID-19 pandemic) periods was compared with that using the whole 4-year data set (PMFwhole). Due to the lack of data variability, event-based PMF solutions did not separate secondary sulfate and nitrate. But they showed better performance in simulating average concentrations and temporal variations of input species, particularly for primary source markers, than the PMFwhole solution. After removing event data, PMF modeling was conducted for individual months (PMFmonth) and the 4-year period (PMF4-year), respectively. PMFmonth solutions reflected varied source profiles and contributions and reproduced monthly variations of input species better than the PMF4-year solution, but failed to capture seasonal patterns of secondary salts. Additionally, four winter pollution days were selected for hour-by-hour PMF simulations, and three sample sizes (500, 1000, and 2000) were tested using a moving window method. The results showed that using short-term observation data performed better in reflecting immediate changes in primary sources, which will benefit future air quality control when primary PM emissions begin to increase.


Subject(s)
Air Pollutants , COVID-19 , Humans , Particulate Matter/analysis , Air Pollutants/analysis , Vehicle Emissions/analysis , Environmental Monitoring/methods , Nitrates/analysis , Salts/analysis , Pandemics , Seasons , Carbon/analysis , China , Water/analysis , Sulfates/analysis
16.
Environ Res ; 214(Pt 4): 114117, 2022 11.
Article in English | MEDLINE | ID: covidwho-1983021

ABSTRACT

Emissions from aviation and airport-related activities degrade surface air quality but received limited attention relative to regular transportation sectors like road traffic and waterborne vessels. Statistically, assessing the impact of airport-related emissions remains a challenge due to the fact that its signal in the air quality time series data is largely dwarfed by meteorology and other emissions. Flight-ban policy has been implemented in a number of cities in response to the COVID-19 spread since early 2020, which provides an unprecedented opportunity to examine the changes in air quality attributable to airport closure. It would also be interesting to know whether such an intervention produces extra marginal air quality benefits, in addition to road traffic. Here we investigated the impact of airport-related emissions from a civil airport on nearby NO2 air quality by applying machine learning predictive model to observational data collected from this unique quasi-natural experiment. The whole lockdown-attributable change in NO2 was 16.7 µg/m3, equals to a drop of 73% in NO2 with respect to the business-as-usual level. Meanwhile, the airport flight-ban aviation-attributable NO2 was 3.1 µg/m3, accounting for a marginal reduction of 18.6% of the overall NO2 change that driven by the whole lockdown effect. The airport-related emissions contributed up to 24% of the local ambient NO2 under normal conditions. Additionally, the average impact of airport-related emissions on the nearby air quality was ∼0.01 ± 0.001 µg/m3 NO2 per air-flight. Our results highlight that attention needs to be paid to such a considerable emission source in many places where regular air quality regulatory measures were insufficient to bring NO2 concentration into compliance with the health-based limit.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Airports , COVID-19/epidemiology , Communicable Disease Control , Environmental Monitoring/methods , Humans , Machine Learning , Nitrogen Dioxide/analysis , Particulate Matter/analysis , Vehicle Emissions/analysis
17.
Environ Sci Pollut Res Int ; 29(59): 89358-89386, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1966170

ABSTRACT

In general, urban canyons are the areas most clearly affected by traffic pollutants since the ability of the canyon to self-ventilate is inhibited due to blockage of buildings or other urban structures. However, previous studies have aimed to improve the pedestrian-level wind speed with void deck in single buildings or short canyons. This study investigated the effects of void deck height and location, and the building height on the airflow field and the traffic pollutant diffusion in a long canyon with L/H = 10, validated by wind-tunnel experiment data. The results show that the void decks have a significant effect on the airflow and pollutant distribution inside the canyon. Air exchange rates (ACH) of the canyons with the void deck are much larger than that of regular canyons, and the perturbation changes of turbulence (ACH') decrease. For the windward void deck, purging flow rate (PFR) and normalized net escape velocity (NEV*) increase by 6.4 times compared to the regular canyon, and for the leeward void deck, increase by 13 times. In particular, when the void decks are at both buildings, they are increased by 38.3 times. Also, for the canyons with the void deck, traffic pollutants are removed out of the canyon by the strong airflow through the void deck. Therefore, unlike the regular canyons, as the void deck and the building height increases, the strength of the airflow through the void deck becomes stronger, and as a result, the mean pollutant concentration is significantly reduced at both walls and the pedestrian respiration level. The mean pollutant concentration on the wall of the building with the void deck and on the pedestrian respiration plane close to it is near zero. These findings can help ease traffic pollution inside the street canyons composed of high-rise buildings, especially in tropical cities.


Subject(s)
Air Pollutants , Environmental Pollutants , Vehicle Emissions/analysis , Models, Theoretical , Cities
18.
Environ Res ; 213: 113719, 2022 10.
Article in English | MEDLINE | ID: covidwho-1907005

ABSTRACT

Stringent pollution control measures are generally applied to improve air quality, especially in the Spring Festival in China. Meanwhile, human activities are reduced significantly due to nationwide lockdown measures to curtail the COVID-19 spreading in 2020. Herein, to better understand the influence of control measures and meteorology on air pollution, this study compared the variation of pollution source and their health risk during the 2019 and 2020 Spring Festival in Linfen, China. Results revealed that the average concentration of PM2.5 in 2020 decreased by 39.0% when compared to the 2019 Spring Festival. Organic carbon (OC) and SO42- were the primary contributor to PM2.5 with the value of 19.5% (21.1%) and 23.5% (25.5%) in 2019 (2020) Spring Festival, respectively. Based on the positive matrix factorization (PMF) model, six pollution sources of PM2.5 were indicated. Vehicle emissions (VE) had the maximum reduction in pollution source concentration (28.39 µg· m-3), followed by dust fall (DF) (11.47 µg· m-3), firework burning (FB) (10.39 µg· m-3), coal combustion (CC) (8.54 µg· m-3), and secondary inorganic aerosol (SIA) (3.95 µg· m-3). However, the apportionment concentration of biomass burning (BB) increased by 78.7%, indicating a significant increase in biomass combustion under control measures. PAHs-lifetime lung cancer risk (ILCR) of VE, CC, FB, BB, and DF, decreased by 44.6%, 43.2%, 34.1%, 21.3%, and 2.0%, respectively. Additionally, the average contribution of meteorological conditions on PM2.5 in 2020 increased by 20.21% compared to 2019 Spring Festival, demonstrating that meteorological conditions played a crucial role in located air pollution. This study revealed that the existing control measures in Linfen were efficient to reduce air pollution and health risk, whereas more BB emissions were worthy of further attention. Furthermore, the result was conducive to developing more effective control measures and putting more attention into unfavorable meteorological conditions in Linfen.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , COVID-19/epidemiology , China/epidemiology , Coal/analysis , Communicable Disease Control , Dust/analysis , Environmental Monitoring , Humans , Pandemics , Particulate Matter/analysis , Particulate Matter/toxicity , Respiratory Aerosols and Droplets , Seasons , Vehicle Emissions/analysis
19.
Huan Jing Ke Xue ; 43(6): 2840-2850, 2022 Jun 08.
Article in Chinese | MEDLINE | ID: covidwho-1876195

ABSTRACT

The COVID-19 lockdown was a typical occurrence of extreme emission reduction, which presented an opportunity to study the influence of control measures on particulate matter. Observations were conducted from January 16 to 31, 2020 using online observation instruments to investigate the characteristics of PM2.5 concentration, particle size distribution, chemical composition, source, and transport before (January 16-23, 2020) and during (January 24-31, 2020) the COVID-19 lockdown in Zhengzhou. The results showed that the atmospheric PM2.5 concentration decreased by 4.8% during the control period compared with that before the control in Zhengzhou. The particle size distribution characteristics indicated that there was a significant decrease in the mass concentration and number concentration of particles in the size range of 0.06 to 1.6 µm during the control period. The chemical composition characteristics of PM2.5 showed that secondary inorganic ions (sulfate, nitrate, and ammonium) were the dominant component of PM2.5, and the significant increase in PM2.5 was mainly owing to the decrease in NO3- concentration during the control period. The main sources of PM2.5 identified by the positive matrix factorization (PMF) model were secondary sources, combustion sources, vehicle sources, industrial sources, and dust sources. The emissions from vehicle sources, industrial sources, and dust sources decreased significantly during the control period. The results of analyses using the backward trajectory method and potential source contribution factor method indicated that the effects of transport from surrounding areas on PM2.5 concentration decreased during the control period. In summary, vehicle and industrial sources should be continuously controlled, and regional combined prevention and control should be strengthened in the future in Zhengzhou.


Subject(s)
Air Pollutants , COVID-19 , Air Pollutants/analysis , COVID-19/epidemiology , COVID-19/prevention & control , China , Communicable Disease Control , Dust/analysis , Environmental Monitoring/methods , Humans , Particle Size , Particulate Matter/analysis , Vehicle Emissions/analysis
20.
Chemosphere ; 303(Pt 1): 135069, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1866964

ABSTRACT

This study quantifies the change in traffic flow on the M25 motorway in the UK due to the COVID-19 outbreak. Moreover, the impact of the change in traffic flow on non-exhaust PM2.5 and PM10 emissions for different categories of vehicle was explored. During the year of the COVID-19 outbreak (March 2020 to February 2021), the total traffic flows of passenger cars (PCs), light goods vehicles (LGVs), heavy goods vehicles (HGVs), and long HGVs on the M25 motorway decreased by 38.6%, 27.6%, 15.9% and 7.2%, respectively, in comparison to the previous year. Correspondingly, the total mass of non-exhaust emissions (PM2.5 and PM10) of PCs, LGVs, HGVs, and long HGVs reduced by 38.7%, 27.3%, 16.2% and 7%, respectively. The traffic flows per year before and during the COVID-19 outbreak of long HGVs were 87.2% and 80.7% less than those of PCs. Correspondingly, the long HGVs emitted 10.2% less but 36.3% more PM2.5 emissions, as well as 10.9% and 66.7% more PM10 emissions than the latter, indicating that long HGVs contribute much more to non-exhaust particles than PCs. In addition, it was found that resuspension of road dust on the M25 motorway was the largest contributor to air pollution among non-exhaust emissions, followed by road wear, tyre wear, and brake wear particles.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , COVID-19/epidemiology , Dust/analysis , Environmental Monitoring , Humans , Particulate Matter/analysis , United Kingdom , Vehicle Emissions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL